Инженерная геология, буровые работы  
 

| на главную | к оглавлению |

Закон Гука и принцип независимости действия сил



Интернет-магазин детских товаров и игрушек "Лига детства"
Подарите незабываемый праздник и море радости ребенку - с душой, улыбкой и удовольствием!
Качественные, безопасные, красивые, оригинальные детские товары и игрушки с доставкой!


Многочисленные экспериментальные наблюдения за поведением деформируемых тел показывают, что в определенных диапазонах перемещения точек тела пропорциональны действующим на него нагрузкам. Впервые указанная закономерность была высказана в 1776 году английским ученым Гуком и носит название закона Гука.

        В соответствии с этим законом перемещение произвольно взятой точки А (рис. 1.5, а - см. предыдущую страницу сайта) нагруженного тела по некоторому направлению, например, по оси x, а может быть выражено следующим образом:

                                                               u = dx P,                                (1.8)

где Р - сила, под действием которой происходит перемещение u; dx×-  коэффициент пропорциональности между силой и перемещением.

        Очевидно, что коэффициент dx зависит от физико-механических свойств материала, взаимного расположения точки А и точки  приложения и направления силы Р, а также от геометрических особенностей системы. Таким образом, последнее выражение следует рассматривать как закон Гука для данной системы.

        В современной трактовке закон Гука определяет линейную зависимость между напряжениями и деформациями, а не между силой и перемещением. Коэффициенты пропорциональности в этом случае представляют собой физико-механические характеристики материала и уже не связаны с геометрическими  особенностями системы в целом.

        Системы, для которых соблюдается условие пропорционально­сти между перемещениями и внешними силами, подчиняются принципу суперпозиции, или принципу независимости действия сил.

        В соответствии с этим принципом перемещения и внутренние силы, возникающие в упругом теле, считаются независящими от порядка приложения внешних сил.

        То есть, если к системе прило­жено несколько сил, то можно определить внутренние силы, напряжения, перемещения и деформации от каждой силы в отдельности, а затем результат действия всех сил получить как сумму действий каждой силы в отдельности.

       Принцип независимости действия сил является одним из основных способов при решении большинства задач механики линейных систем.


 
 

© 2007-2016 pppa.ru - все права защищены
При цитировании материалов и статей обратная ссылка строго обязательна


Детские игрушки: машинки и конструкторы, куклы и кукольные домики, развивающие игры и удивительные наборы. Тысяча наименований.
Интернет-магазин "Лига детства" - это качество и отличный сервис. Весь товар сертифицирован. Оперативная доставка.