Инженерная геология, буровые работы  
 

| на главную | к оглавлению |

Потенциальная энергия деформации



Оригинальные тексты для сайтов и веб-проектов. Копирайт, рерайт, переводы.
Профессиональное наполнение вебсайтов уникальным контентом и новостями.
Оптимизированные тематичные тексты и фото по низкой стоимости. Надёжно.


Внешние силы, приложенные к упругому телу и вызывающие изменение геометрии тела, совершают работу А на соответствующих перемещениях. Одновременно с этим в упругом теле накапливается потенциальная энергия его деформирования U. При действии динамических внешних нагрузок часть работы внешних сил превращается в кинетическую энергию движения частиц тела К. Приняв энергетическое состояние системы до момента действия данных сил равным нулю, и в условиях отсутствия рассеивания энергии, уравнение баланса энергии можно записать в следующем виде:

А = U + K.                                                       (2.8)

        При действии статических нагрузок К = 0, следовательно,

А = U.                                                (2.9)

        Это означает, что при статическом нагружении работа внешних сил полностью преобразуется в потенциальную энергию деформации. При разгрузке тела производится работа за счет потенциальной энергии деформации, накопленной телом. Таким образом, упругое тело является аккумулятором энергии. Это свойство упругого тела широко используется в технике, например, в заводных пружинах часовых механизмов, в амортизирующих рессорах и др. В случае простого растяжения (сжатия) для вывода необходимых расчетных зависимостей потенциальной энергии деформации рассмотрим решение следующей задачи.

        На рис. 2.4, а изображен растягиваемый силой Р стержень, удлинение которого соответствует отрезку Dl, ниже показан график изменения величины удлинения стержня Dl в зависимости от силы Р (рис. 2.4, б). В соответствии с законом Гука этот график носит линейный характер.

        Пусть некоторому значению силы Р соответствует удлинение стержня Dl. Дадим некоторое приращение силе DР - соответствующее приращение удлинения составит d (Dl ). Тогда элементарная работа на этом приращении удлинения составит:

dA = (P + d P)×d (D l = P×d (D l + d P × d (D l ) ,                           (2.10)

вторым слагаемым, в силу его малости, можно пренебречь, и тогда

dA = P×d (D l ).                                                   (2.11)

        Полная работа равна сумме элементарных работ, тогда, при линейной зависимости “нагрузка - перемещение”, работа внешней силы Р на перемещении Dl будет равна площади треугольника ОСВ (рис. 2.4), т.е.

А = 0,5 Р×Dl .                                                   (2.12)

        В свою очередь, когда напряжения s и деформации e распреде­лены по объему тела V равномерно (как в рассматриваемом случае) потенциальную энергию деформирования стержня можно записать в виде:

.                                                               (2.13)

        Поскольку, в данном случае имеем, что V = F l, P = s F и s = Е e, то

,  (2.14)

т.е. подтверждена справедливость (2.9).

        С учетом (2.5) для однородного стержня с постоянным попе­речным сечением и при Р = const из (2.14) получим:

.                                                   (2.15)

 


 
 

© 2007-2017 pppa.ru - все права защищены
При цитировании материалов и статей обратная ссылка строго обязательна


Качественное и надёжное обслуживание (ведение, администрирование) вебсайтов,
интернет-магазинов, витрин, блогов, форумов и других web проектов недорого.
Полное администрирование сайтов, включая наполнение контентом и продвижение.