Инженерная геология, буровые работы  
 

| на главную | к оглавлению |

Гармонические колебания. Осциллятор



Оригинальные тексты для сайтов и веб-проектов. Копирайт, рерайт, переводы.
Профессиональное наполнение вебсайтов уникальным контентом и новостями.
Оптимизированные тематичные тексты и фото по низкой стоимости. Надёжно.


В природе часто встречается периодическая зависимость от времени различных физических величин. Периодически изменяются со временем температура и освещенность при вращении Земли, периодическое движение совершают маятник часов и колеблющийся грузик на пружине. Периодическим называют процесс, при котором физическая величина принимает одинаковые значения через равные промежутки времени. Такие характерные промежутки времени называют периодом процесса.

 

 

 

 

 

 

При движении точки с постоянной скоростью по окружности период равен времени полного оборота. При колебаниях периодом является время, в течение которого совершается полное колебание. Вычислим период колебаний математического маятника — материальной точки, характеризуемой массой m и подвешенной на невесомой нити длиной l (рис.).

При свободном движении маятника в поле силы тяжести остается постоянной полная энергия маятника — сумма кинетической и потенциальной энергий
E = T + U . Следовательно, при бесконечно малом перемещении маятника вдоль траектории изменение полной энергии должно быть равно нулю.

Изменение потенциальной энергии маятника при его перемещении на расстояние dr можно вычислить как работу силы тяжести на пути dr. При этом работу совершает лишь составляющая силы тяжести вдоль направления движения. Составляющая силы тяжести, нормальная к направлению движения, работу не совершает. Таким образом, dU = m×g×sina dr.

Изменение полной энергии:

Произведя дифференцирование и разделив это уравнение сначала на dt, а затем на величину mv=mdr/dt, получим уравнение движения маятника в виде:

.                                                       (3.1)

Удобно перейти к переменной a, пользуясь соотношением dr = lda

.                                                   (3.2)

Это уравнение довольно сложное, несмотря на свой простой вид. Его можно упростить в случае малых колебаний, когда величина угла колебаний маятника, измеряемая в радианах, мала по сравнению с единицей, a << 1. В этом случае можно заменить sina ~ a , и уравнение движения принимает вид:

.                                                          (3.3)

Решением уравнения (3.3) является функция (в чем можно убедиться при прямой подстановке)

a = a0cos(ωt+j0),                                                         (3.4)

где a0— максимальный угол отклонения маятника, являющийся амплитудой колебаний; ω— угловая частота колебаний, связанная с периодом колебаний соотношением ω=2p/T; j0 — начальная фаза колебания — величина, характеризующая угол отклонения маятника (a0cosj0) в начальный момент его движения (t = 0).

Подставляя выражение (3.4) в уравнение (3.3), найдем, что последнее выполняется при значении угловой частоты:

,                                                (3.5)

называемой собственной частотой колебаний маятника. Таким образом, период колебаний маятника:

.                                                                 (3.6)

Обратим внимание на то, что период собственных колебаний не зависит ни от амплитуды колебаний маятника, ни от величины колеблющейся массы.


 
 

© 2007-2017 pppa.ru - все права защищены
При цитировании материалов и статей обратная ссылка строго обязательна


Качественное и надёжное обслуживание (ведение, администрирование) вебсайтов,
интернет-магазинов, витрин, блогов, форумов и других web проектов недорого.
Полное администрирование сайтов, включая наполнение контентом и продвижение.