Инженерная геология, буровые работы  
 

| на главную | к оглавлению |

Уравнения колебаний



Интернет-магазин детских товаров и игрушек "Лига детства"
Подарите незабываемый праздник и море радости ребенку - с душой, улыбкой и удовольствием!
Качественные, безопасные, красивые, оригинальные детские товары и игрушки с доставкой!


 

 

 

 

Рассмотрим другой пример малых колебаний вблизи положения равновесия — колебания массы под действием упругой силы (рис.). Если на конце пружины закреплена масса m и пружина характеризуется жесткостью k, то при смещении массы на расстояние x возникает возвращающая упругая сила F = –k×x. Уравнение колебаний массы в этом случае имеет вид:

,                                                             (3.7)

аналогичный уравнению (5.3):

.                                                (3.8)

Собственной частотой колебаний массы на пружине является величина:

,                                                       (3.9)

а зависимость смещения массы от времени определяется выражением, аналогичным выражению (3.4):

x(t) = xmcos0t+a0).                                          (3.10)

Такими же уравнениями колебательного движения описывается равномерное вращение точки по окружности постоянного радиуса. Колебания при этом испытывают координаты точки x(t) и y(t) (рис.):

 

 

 

 

 

 

 

 

x(t)=Rcost+a),                        (3.11)

y(t) = Rsint + a) = Rcost+ap/2),             

где угловая частота ω=v/R определяется постоянной скоростью вращения v. Видно, что координата y определяется той же периодической зависимостью от времени, что и координата x, но только сдвинутой относительно последней на p/2.

Все рассмотренные выше примеры имеют общее свойство — во всех случаях движение может быть описано с помощью всего лишь одной периодически изменяющейся со временем величины. В случае маятника такой величиной является угол отклонения a(t), в случае массы на пружине — величина смещения x(t), в случае движения точки по окружности — одна из координат x(t) или y(t) (другая может быть выражена через первую с помощью уравнения окружности). В механике о таких движениях говорят как о движениях с одной степенью свободы или одномерных движениях. Таким образом, при одномерном периодическом движении координата, соответствующая определенной степени свободы системы, испытывает колебания.

Материальную точку, совершающую колебания, называют осциллятором (от английского слова oscillation — колебание). Колебание, которое происходит по закону cos(ωt) и характеризуется единственной частотой ω, называют гармоническим (поскольку гармоническое звуковое колебание соответствует одному тону).

Таким образом, рассмотренные выше колебания представляют собой частные случаи свободных колебаний гармонического осциллятора:

,                                                          (3.12)

решение которого будем записывать в виде:

x(t)= Acos0t+a),                                                         (3.13)

здесь A– амплитуда колебаний; ω0 – собственная частота; величина ω0t+a–фаза колебания.

Удобство использования представления о гармоническом осцилляторе связано с тем, что сложные колебания системы со многими степенями свободы можно представить в виде набора колебаний отдельных гармонических осцилляторов, соответствующих различным степеням свободы.

Определим энергию гармонического осциллятора. Энергия колебания представляет собой полную энергию механического движения, выраженную через частоту и амплитуду колебания. Координата и скорость частицы, совершающей колебания, x(t)= Acos0t+a), v = –0sin0t+a), поэтому кинетическая и потенциальная энергия осциллятора примут вид:

.                              

Выразим постоянную k с помощью соотношения:

.                                                                    

Полная энергия осциллятора

.                                            (3.14)

Таким образом, энергия колебаний пропорциональна квадрату собственной частоты и квадрату амплитуды колебаний. Обратим внимание на сходство этого выражения с энергией вращения материальной точки вокруг некоторой оси: T=Jω2/2, где J – момент инерции точки. Роль момента инерции играет величина mA2.


 
 

© 2007-2016 pppa.ru - все права защищены
При цитировании материалов и статей обратная ссылка строго обязательна


Детские игрушки: машинки и конструкторы, куклы и кукольные домики, развивающие игры и удивительные наборы. Тысяча наименований.
Интернет-магазин "Лига детства" - это качество и отличный сервис. Весь товар сертифицирован. Оперативная доставка.