Инженерная геология, буровые работы  
 

| на главную | к оглавлению |

Скорость затухания колебаний



Интернет-магазин детских товаров и игрушек "Лига детства"
Подарите незабываемый праздник и море радости ребенку - с душой, улыбкой и удовольствием!
Качественные, безопасные, красивые, оригинальные детские товары и игрушки с доставкой!


Скорость затухания колебаний определяется величиной β = r/2m, которую называют коэффициентом затухания. Найдем время τ, за которое амплитуда уменьшается в e раз. По определению eβτ = e‑1, откуда βτ = 1. Следовательно, коэффициент затухания обратен по величине тому промежутку времени, за который амплитуда уменьшается в e раз.

Согласно формуле (3.24) период затухающих колебаний равен

.                                                 (3.27)

При незначительном сопротивлении среды () период колебаний практически равен T0 = 2π/ω0. С ростом коэффициента затухания период колебаний увеличивается.

Последующие наибольшие отклонения в какую-либо сторону (например, a', a'', a''' и т.д. на рис. образуют геометрическую прогрессию. Действительно, если a' =a0eβt, то a'' = a0eβ(t+T) = a'eβT, a''' =a0eβ(t+2T) =a''eβT и т. д. Вообще, отношение значений амплитуд, соответствующих моментам времени, отличающимся на период, равно

.

Это отношение называют декрементом затухания, а его логарифм — логарифмическим декрементом затухания:

                                        (3.28)

(не путать с λ в формулах (3.23 ) и (3.25)!).

Для характеристики колебательной системы обычно используется логарифмический декремент затухания λ. Выразив в соответствии с (3.28) β через λ, и T, можно закон убывания амплитуды со временем записать в виде

.

За время τ, за которое амплитуда уменьшается в е раз, система успевает совершить Ne = τ/T  колебаний. Из условия  получается, что . Следовательно, логарифмический декремент затухания обратен по величине числу колебаний, совершаемых за то время, за которое амплитуда уменьшается в e раз.

Для характеристики колебательной системы часто употребляется также величина

,                                                   (3.29)

называемая добротностью колебательной системы. Как видно из ее определения, добротность пропорциональна числу колебаний Ne, совершаемых системой за то время τ, за которое амплитуда колебаний уменьшается в e раз.

Подстановка функции (58.7) и ее производной в выражение для полной энергии колеблющейся системы E=kx2/2 + mv2/2  приводит после преобразований к формуле

,                          (3.30)

где y = arctg (β/ω). График этой функции изображен на рис. Убывание энергии обусловлено работой  силы  сопротивления среды . Мощность, развиваемая этой силой, равна . Таким образом,

.

Отсюда вытекает, что в тех точках кривой E(t), где , касательная к кривой параллельна оси t. В остальных точках dE/dt < 0.

 

 

 

 

 

 

При малом затухании (β<<ω0) слагаемым, содержащим синус, в формуле (3.30) можно пренебречь и считать, что энергия изменяется по закону

E = E0e‑2βt,                                                       (3.31)

где E0 = k(a0)2/2 — значение энергии в начальный момент. К тому же результату можно прийти, если заменить определяемое формулой (3.30) мгновенное значение E(t) его средним значением за времяот tT/2 до t + T/2 (T — период колебаний), вычисленным в предположении, что множитель ехр (—2βt) в течение промежутка T остается постоянным.

Из формулы (3.27) следует, что с ростом коэффициента затухания период колебаний увеличивается. При β=ω0 период колебаний обращается в бесконечность, т. е. движение перестает быть периодическим.

При β>ω0 корни характеристического уравнения становятся вещественными (см. (3.25)) и решение дифференциального уравнения (3.21) оказывается равным сумме двух экспонент:

.

Здесь  C1  и   C2 — вещественные постоянные, значения которых зависят от начальных условий (от x0 и v0).Следовательно, движение носит апериодический (непериодический) характер— выведенная из положения равновесия система возвращается в положение равновесия, не совершая колебаний.

На рис.показано оба возможных способа возвращения системы к положению равновесия при апериодическом движении. Каким из этих способов приходит система в положение равновесия, зависит от начальных условий. Движение, изображаемое кривой 2, получается в том случае, когда система начинает двигаться из положения, характеризуемого смещением x0, к положению равновесия с начальной скоростью v0 определяемой условием

.                                            (3.32)

Это условие будет выполнено в том случае, если выведенной из положения равновесия системе сообщить достаточно сильный толчок к положению равновесия. Если, отведя систему из положения равновесия, отпустить ее без толчка (т. е. с v0=0) или сообщить ей толчок недостаточной силы (такой, что v0 окажется меньше определяемой условием (3.32)), движение будет происходить в соответствии с кривой 1 на рис.

 

 

 

 


 
 

© 2007-2016 pppa.ru - все права защищены
При цитировании материалов и статей обратная ссылка строго обязательна


Детские игрушки: машинки и конструкторы, куклы и кукольные домики, развивающие игры и удивительные наборы. Тысяча наименований.
Интернет-магазин "Лига детства" - это качество и отличный сервис. Весь товар сертифицирован. Оперативная доставка.