Инженерная геология, буровые работы  
 

| на главную | к оглавлению |

Свойства бегущих волн



Оригинальные тексты для сайтов и веб-проектов. Копирайт, рерайт, переводы.
Профессиональное наполнение вебсайтов уникальным контентом и новостями.
Оптимизированные тематичные тексты и фото по низкой стоимости. Надёжно.


Запишем уравнение (3.47) в виде:

.                                                           (3.50)

где v — скорость перемещения величины и вдоль оси х. Это уравнение было получено для упругих волн в сплошной струне, но оно не содержит какой-либо специфики упругих волн, а выражает лишь волновой характер изменения физической величины u(x,t) во времени и пространстве. Поэтому, если под величиной v понимать скорость этого изменения, то данное уравнение можно рассматривать как общий вид волнового уравнения для произвольной физической величины u(х, t).

Решением волнового уравнения согласно (3.48) является периодическая по времени и координате функция

u(x,t) = u×cos[ω(tx/v)+a],                                             (3.51)

которая представляет собой бегущую волну, осуществляющую перенос фазы колебания величины и с постоянной скоростью u вдоль направления распространения волны. Расстояние, на которое перемещается фаза за один период колебания Т, l = v×T называется длиной волны. Удобно для описания волны пользоваться угловыми переменными – угловой частотой ω = 2p/T и волновым числом k = 2p/l. Скорость перемещения фазы может быть выражена через эти величины

v = vф =l/T = ω/k                                                           (3.52)

и называется фазовой скоростью волны. Заменив в уравнении (3.51) скорость на фазовую, запишем уравнение бегущей волны в виде:

u(x,t) = u×costkx + a).                                                        (3.53)

Это уравнение представляет собой наиболее часто употребляемый вид бегущей волны, распространяющейся вдоль оси x.

При распространении волны в сплошной среде колебания испытывает одновременно большое число частиц. Геометрическое место точек, колеблющихся в одинаковой фазе, образует волновую поверхность. Например, в случае волны (3.53), распространяющейся вдоль оси x, волновыми поверхностями являются любые плоскости x = const. Такая волна называется плоской. Поверхность, отделяющая колеблющиеся частицы от остальной области пространства, которой колебания еще не достигли, — фронт волны.

Выше была рассмотрена волна, которая распространялась вдоль оси x . Это случай одномерного распространения, так как положение колеблющейся частицы определяется заданием только одной величины — ее координаты х. Волна может распространяться на плоскости — это случай двухмерного распространения. Наконец, волна может распространяться в трехмерном пространстве. Довольно частой является ситуация, когда источник колебаний локализован в малой области пространства или сосредоточен, а волна распространяется во все стороны от него. Если свойства среды, в которой распространяется волна, одинаковы по всем направлениям, то скорость волны во всех направлениях будет одна и та же, и все волновые поверхности, включая и фронт волны, будут представлять собой сферы с центром в точке нахождения источника колебаний. Такую волну называют сферической. На больших расстояниях от источника, когда радиус сферы, определяющей фронт волны, становится очень большим, участки волнового фронта с размерами, много меньшими расстояния до источника, можно рассматривать как плоские, т. е. считать сферическую волну плоской. Это приближение используется при решении многих задач.


 
 

© 2007-2017 pppa.ru - все права защищены
При цитировании материалов и статей обратная ссылка строго обязательна


Качественное и надёжное обслуживание (ведение, администрирование) вебсайтов,
интернет-магазинов, витрин, блогов, форумов и других web проектов недорого.
Полное администрирование сайтов, включая наполнение контентом и продвижение.