Инженерная геология, буровые работы  
 

| на главную | к оглавлению |

Частный случай криволинейных координат – полярные координаты



Интернет-магазин детских товаров и игрушек "Лига детства"
Подарите незабываемый праздник и море радости ребенку - с душой, улыбкой и удовольствием!
Качественные, безопасные, красивые, оригинальные детские товары и игрушки с доставкой!


Рассмотрим частный случай криволинейных координат – полярные координаты точки на плоскости: применим далее к задаче движение точек в центральном силовом поле (рис. 34).


Рис. 34

 

(x, y) – декартовы координаты.

(r, ) – полярные координаты.

Угол => от Ох против часовой стрелки – положительное направление

 

Формулы преобразования:

x = r cos, y = r sin, где r 0; 0 < 2

(можно рассматривать и ).

Если r = const – концентрические окружности с центром в точке О.

Если = const – прямолинейные лучи из точки О.

 

Введём два орта:

 

Найдём производные     по углу (рис. 35):

 


Рис. 35

 

 

   (так как r = 1)

при ,

т. е.       .

 

Далее:

 

 при ,

т. е.      .

При каждом дифференцировании по φ т. е. происходит поворот на угол .

Выведем формулы проекции скорости и ускорения точки М на направления касательных к координатным линиям в полярных координатах.

Так как   , то

 

 

 

Но:   

 

Очевидно:

 

Для ускорения:

 

.

 

Но:   .

 

Очевидно:

 


 
 

© 2007-2016 pppa.ru - все права защищены
При цитировании материалов и статей обратная ссылка строго обязательна


Детские игрушки: машинки и конструкторы, куклы и кукольные домики, развивающие игры и удивительные наборы. Тысяча наименований.
Интернет-магазин "Лига детства" - это качество и отличный сервис. Весь товар сертифицирован. Оперативная доставка.